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Thermodynamic perturbation theory of hard-core square-well 
bosons 

Christina Keller, V C Aguilera-Navarrot and M de Llano 
Physics Department, North Dakota State University, Fargo, N D  58105, USA 

Received 8 July 1987 

Abstract. We investigate a calculational scheme for an eventual first-principles description 
of the ground-state energy of the many-boson Schrodinger equation. We employ a model 
4He intermolecular pair potential consisting of a hard core surrounded by an attractive 
rectangular well. The study is based on the well known low-density expansion for such a 
system, where three coefficients are known. The first corrections to the fourth coefficient 
are determined on the basis of the rearranged series being a thermodynamic perturbation 
expansion, namely one representing perturbation not about the ideal gas but about the 
hard-sphere fluid. Pad6 approximants, and variations thereof, are employed to extrapolate 
to physical regimes in both resulting series, in density as well as in the attractive coupling 
constant. 

1. Introduction 

Quantum field theory and Rayleigh-Schrodinger perturbation theory applied to an 
ideal gas have produced for the ground-state energy per particle of a many-body system 
well known low-density expansions, with three coefficients thus far determined for 
bosons and four for fermions. The particular approach we have been implementing 
attempts [ 13 to ascertain how much can be achieved in constructing an accurate equation 
of state for several many-body Schrodinger systems, based only on the facts, namely 
the above-mentioned coefficients, and using extrapolation schemes such as Pad6 [ 2 ]  
and other generalisations. 

For identical bosons of mass m, with pair interaction S-wave scattering length a 
and number density n = N /  V, one has for the ground-state energy per particle [3] 

E 2 r h 2  
N m  
_-- - n a { l + ~ , ( n a ~ ) ” ~ +  ~ , n u ~  ~ ~ ( n u ~ ) +  ~ ; n a ~ + ~ [ ( n a ’ ) ’ ” l n  (nu’)]} 

where C, = 128/15&= 4.814417 7 8 . .  . and C2 = 8 ( 4 r / 3  -a) = 19.653 915 1 8 . .  . . 
Here C j  is unknown but potential shape dependent since it involves three-body cluster 
diagrams. Expansions such as (1) were abandoned early, perhaps for two fundamental 
reasons: (i) for negative scattering length (namely most two-body potentials of interest 
in condensed matter science) imaginary terms appear on the RHS of (1) which are not 
easy to deal with and (ii) many-body systems such as liquid helium are definitely not 
low-density substances as (1) assumes. Difficulty (i) is bypassed very naturally by 
expanding (analytically or numerically) 

U = a,( 1 + U ,  A + U,A  + . . .) ( 2 )  

*On leave from Instituto de Fisica Teorica, SHo Paulo, Brazil. 
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where A is some appropriate measure of the attraction of the two-body potential. 
Substitution into (1) then leads to 

which is evidently real no matter how large A is (and thus how negative a is). The 
‘rearrangement’ (3) is nothing more than a perturbation scheme, but now about the 
gas of attractionless particles, i.e. the scheme recommended by van der Waals more 
than a hundred years ago for classical fluids. Difficulty (ii) can perhaps be surmounted 
with the extrapolation procedures mentioned above. 

In  general, the S-wave scattering length a has the integral representation 

a = lox r dr v ( r ) u J r )  (4) 

where U( r )  is the central pair-potential interaction energy and uo( r )  is the S-wave zero 
scattering energy radial wavefunction satisfying u,(O) = 0. We restrict our  present study 
to the hard-core square-well ( HCSW) potential function: 

In this instance, effective range theory [4] gives the analytical expression 

a = c[ 1 + a (  1 - t a n f l / f i ) ]  = c[ 1 - a ( f A  + & A 2 + $ $ A 3  + & A 4 +  . . .)] (6) 
where we have defined the dimensionless range a and attractive strength A parameters 
as 

(7) 

(8) 

cy = ( R  - C ) / C  

cj = c,( 1 + c3 , A + C,,A + . . .) 

A = muo( R - c ) ~ , /  h’. 
We shall also express the unknown coefficient Ci in (1) as 

with the coefficients C,, ( i  = 1 ,2 , .  . .) to be determined below via global physical 
constraints to be discussed later. Note that C3 will be the coefficient of the n z  term 
in the E /  N low-density series for a fluid of boson hard spheres, a system which has 
been investigated [ 5 ]  in the Green function Monte Carlo ( G F M C )  scheme. In  general, 
the n 2  term in the energy in (1 1 is potential shape dependent since it corresponds to 
genuine three-body cluster diagrams which make their appearance for the first time in 
this order; such is also the case in the many-fermion [6] system with the k t  term. 

2. Rearranged perturbation scheme 

In  the rearranged perturbation series (3) we evidently have 

e , ( x )  = 1 + C , X  + c Z x 2  In x 2  + c 3 x 2  + . . , (9 1 
corresponding to the hard-sphere fluid. The extrapolant of (91, arrived at [7] by 
assuming that the corresponding energy per particle must have a second-order uncer- 
tainty principle pole at some finire (perhaps Bernal) density nB, is the expression 
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By definition, expansion of the RHS of (10) about x = 0 gives the series (9) through 
the order indicated. A global fit to the four GFMC data points of (10) determined [7] 
that 

C3 = 26.2 and X B  = ( ngc3)1 ’2  = 0.7082. ( 1 1 )  

The latter value means a packing density of about 0.35 times the ‘primitive hexagonal’ 
(FCC, HCP,  etc) packing density n 0 = f i / c 3  and is to be contrasted with the classical 
Bernal value of 0.86 as deduced through actual experiments [8] with steel ball-bearings. 
A quantum packing density smaller than the classical one is, of course, fully expected 
just from wave mechanical diffraction effects [ 1 1 .  The form (10) thus obtained is very 
probably quite accurate over all physical densities, 0 < n < n,, since solving for (In x + 
constant) in (10) and exponentiating allowed a mapping of the GFMC data onto an 
almost straight line. The slope of this line fixes the value of the constant, and thus of 
C3, since C, and C2 are known pure numbers. 

The higher-order corrections to (10) will be, from ( l ) ,  (3) ,  (6) and (8 ) ,  the infinite 
sequence of low-density non-power series: 

e, ( x = a, ( 1 + C, , x + C2 I x2 In x2 + C, ~ x’ + . . . ) , (12) 

Note that their structure is again identical to that of (1). Comparing (2) and (6) gives, 
for the a,, 

a ,  = - i f f  a2 = -$f f  . . .  (13)  
while the coefficients C, ,  and C,, ( i  = 1,2 ,3 ,4)  are the polynomials in a given in [7]. 
Furthermore, Cl, and Cz5 were found [9] by the computer-algebraic scheme called 
MACSYMA [lo] and are 

Cl, = (C,/256~,)[640~5 + 9 6 0 ~ , ~ , +  (960~2 + 2 4 0 ~ : ) ~ 3  + 240~1 U:  - 40& + 3 ~ : ]  
(14) 

Finally, the C3, ( i  = 1 ,2 ,3 ,4 ,5 )  are to be determined by constraints on the first- 
and higher-order energy corrections which collectively reflect the hypothesis that in 
the quantum fluid case first-order van der Waals (also known as ‘thermodynamic’) 
perturbation theory is exact in the limit of close packing. This hypothesis has been 
proved rigorously in two [ 111 as well as one [ 121 dimensions for the classical statistical 
mechanical case at closest (primitive hexagonal) packing and conjectured [ 1 1 1  to occur 
as well in three dimensions. In our case, this amounts to saying that, as the packing 
density is approached from below, the many-boson energy (3) for HCSW particles must 
be linear in A (or uo).  Specifically, in this limit the energy could be estimated by the 
simple result 

cz,= (C,/a,)[4a,+ 12a,a,+ 12(a*+ a:)a,+ 12a,a:+4a:a2]. 

where the first (diverging) term follows from (10) and the second term arises as follows. 
As the density of close packing of spheres is approached the dependence on the 
attractive pair potential must be given simply by the number of sphere centres within 
the attractive range R, minus the central sphere (i.e. unity), times the attractive potential 
depth -U,,, with the customary factor o f f  to avoid double counting. The constraint 
(15 )  thus obtained then demands, if E , ( x )  stand for the appropriate extrapolatants to 
the low-density forms e , ( x ) / a ,  of (121, that 

E , ( X ~ )  =constant E ,  ( x , )  = 0 ( i = 2 , 3 , 4  , . . .  ). (16) 
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For the He-He HCSW potential deduced by Burkhardt [13] to be ‘phase equivalent’ 
to the He-He Lennard-Jones potential, one has c = 1.685 A, R = 5.5 A and U,,= 
1.899 998 65 K. Equations (6) and (7) then give (for h 2 / m  = 12.120 904, appropriate 
for 4He) 

(Y = 2.264 095 A = 2.281 4165 a = -36.2938 A.  (17) 

Hence, combining (3), ( l l ) ,  (15) and (16) yields 

&,(xB) = 2.955 42. (18) 

The e , ( x ) / a ,  ( i  = 1, 2,3,4,  5 )  series (12) through the known terms-that is, without 
the x2 term-are plotted in figure 1. The open circle on the x = ( nc3)’I2 axis marks 
the packing density value xB = 0.7082. We note that these ‘raw’ forms are not only far 
from conforming to the constraints (16) and (18) but also attain enormously large 
values compared with unity. Furthermore, first order violates the rigorous requirement 
[7] of positivity for all x. Finally, there is no correlation at all among the different 
orders, as would be expected in view of the almost perfect monotonicity in order 
E , ( x )  > B , + ~ ( X )  observed in the exact calculations carried out [ 141 through fourth order 
for purely attractive fermions. 
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Figure 1. Plot of the known portion of low-density series, equation (121, namely 1 + C , , x +  
C,,x2 In x2, for orders i = 1-5. Here x-  inc3) ’  ’. Constants used appear in table 2 .  Note 
that the value of each curve at x = 0 is unity. 

As a first attempt to ‘tame’ the functions e , ( x ) / a ,  we assume values for the unknown 
C,, in (12) such that the resulting series do conform to constraints (16) and (18). We 
designate these new truncated forms by E , ( X ) ~ , . ” ~ ;  they are plotted in figure 2. Although 
the magnitudes have been damped down somewhat, one still has the first-order form 
violating positivity, as well as the absence of the expected correlation between orders. 
A more elaborate scheme is thus called for. 

This extrapolation (or analytical continuation) of the e , ( x ) / a ,  from x=O to 
physical values, say x,  (namely liquid 4He saturation density), will be designated by 
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2 

20 - I, 

Figure2. Same as figure 1 but with the first unknown term in (12), namely C,,x2, added 
and determined by imposing constraints (16) and (18). The open circle on the x axis 
locates the packing density constant at xB = 0.7082. The value of each curve at x = 0 is unity. 

E ~ ( x ) .  Once constructed, the E ~ ( x )  will permit expressing the ground-state energy (3) as 

1 E 27h’  z 

E ~ ( x ) +  aiEi(x)h’ . N -  mc2 , = I  

Afterwards, one might need to extrapolate the expression in large parentheses from 
A = 0 to the physical A = A, (namely the value given in (17) ) .  This latter step can be 
implemented, for example, by construdting the Pade approximants [ L/  M ] ( A )  to (19). 
We will work through fifth order so that 0 S L +  M s 5. 

The two-step extrapolation just outlined-first in density, and then in attractive 
coupling-is in keeping with the trajectory described in [6,9]. This particular path 
avoids crossing any gas-liquid phase boundaries in arriving at the desired equilibrium 
(zero-pressure) liquid state from the low-density gaseous phase. Thus, both our 
extrapolants E , ( x )  from the first step and the [ L / M ] ( A )  from the second step must be 
singularity-free for 0 < x < x, < xB and 0 < A < A,, respectively. Note, however, that 
the [ L/  M ] (  A )  so constructed may develop poles in 0 < x < xB. These, however, are 
of no undesirable consequence as would be the case if we followed the trajectory 
defined by constant A = A p  and x going from 0 to x, < xB. 

3. Density series analysis 

We apply the so-called ‘tailing’ method [9] of constructing generalised Pad6 
approximants to the log-bearing series (12), which are simply rewritten as 

1 + ~ , x  + ~ ~ x ’  In x2+ ~ , x ’ +  . . , . (20) 

The method is inspired by the very common fact that series used in physical theories 
have the earlier coefficients known to higher accuracy than the later ones, occurring 
in the tail of the series. The idea is to split off from the tail of the original series the 
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smallest series that will admit a PadC-like representation. For example, (20) can be 
rewritten as 

1+K,x+K2x21nx2  +...I 
and the bracketed expression Padi-represented by 

- I  

[ 1 - 2 & 1  

However, binomial expansion of this will generate unwanted terms (lnx2)-", n a 
positive integer, in the original series, and hence (21) is disqualified as a starting point. 
The next step is to rewrite (20) as 

. . .  

and replace the bracketed expression by all possible Padi-like forms. The latter will 
be the three forms: 
1 + (K2/Kl)x  In x2 + ( K 3 /  K l ) x  1 

1 - ( K 3 / K , b  1 - (K2 /Kl )x Inx2  1 - ( K 2 /  K,)x In x2 - ( K 3 /  K , ) x  
(24) 

which upon binomial expansion reproduce the bracketed expression in (23). Finally, 
all possible Padi-like forms are constructed for the full expression (20); there turn out 
to be nine. 

As such, the tailing method provides extrapolations to (20) with a general structure 

M + N ( x ) / D ( x )  ( 2 5 )  
with M = 1 or 0, and where N ( x )  and D(x)  are series with or without the log term. 
The left half of table 1 lists all possible extrapolants of the type (25) to the original 
series (20). We have deliberately listed twelve forms to emphasise that redundancies 
may occur easily in the course of tailing: namely, form V is identical to form I, for 
example, so that one really has only 3 + 8 = 11 distinct extrapolants to (20). Tailing 
applied to other log-bearing series, such as the four-species fermion low-density series, 
leads [15] to a much larger number of extrapolants. The method can also be applied 
to power series, where it leads to all the standard Pad6 approximants plus a few new 
rational approximants [9]. 

Table 1 thus contains eleven distinct candidates for each E , ( x )  ( i  = 1,2, .  . .) 
extrapolant to be used in the energy expression (19). The following global requirements 
will now be applied to each candidate and the latter rejected if it violates one or more 
of these conditions: 

(i) E,(x) must have no poles in the physical interval (0 < x < xB = 0.7082) for 
reasons given previously; 

(i i)  E,(x) > 0, for all x in the physical interval, for i = 1,2 (positivity) [7]; 
(iii) X * E ~ ( X )  must increase monotonically in x. This is so because the first-order 

energy correction is equivalent to an expectation value, between the ground-state 
wavefunction of the hard-sphere fluid, of the attractive potential well summed over 
all pairs of particles. As such, this quantity can only decrease as the particles are 
packed closer together. 

It is well known [ 161 that the ideal-gas-based perturbation series for bosons 
diverges as of third order, order by order, no matter how well behaved the interparticle 
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U 

interaction. These divergences, in fact, necessitate the infinite partial summations 
yielding the renormalised, though non-analytic, result (1). I t  seems reasonable to 
expect that the hard-sphere-fluid-based perturbation corrections for bosons will have 
a general behaviour in many ways similar to that for fermions. The aforementioned 
exact fermion calculations [ 141 through fourth order suggest, for quantum particles in 
general, two characteristic properties as of third order for the E , ( x ) :  ( a )  monotonicity 
in order for a given density, i.e. E ~ ( x ) >  E ~ ( x )  and ( b )  positivity, or E ~ ( x ) > O  and 
E ~ ( x )  > 0. Through numerous applications in boson problems we found that, if these 
two latter properties were not imposed on the E , ( x )  as of third order, we could not 
eliminate wildly behaving extrapolants and, worse still, an overall disruption developed 
in the expected convergence of the thermodynamic perturbation scheme beyond second 
order. With this a posteriori reasoning, we propose the two additional conditions: 

(iv) E , ( x )  > E , + , ( x )  ( i  = 1 , 2 , 3 , .  . .) (monotonicity in order); 
(v) E , ( x )  > 0, for all x in the physical interval, for i = 4 and 5. 
The right half of table 1 lists the reasons for elimination of a given extrapolant 

E , ( x ) ,  effected upon applying requirements (i)-(v), after imposing constraints (16) and 
(18). The designation ‘no solution’ (NS)  in table 1 means that the condition E , ( x ~ )  = 0 
cannot determine the constant C3r ,  since the latter constant appears only in the 
denominator of the corresponding extrapolant, which is finite for all finite x. In first 
order, as reported in table 1, two approximants survived: forms I1 and 111. Both of 
these, however, are practically degenerate with each other in the physical interval 
O<x<x,.  In figure 3 we graph their difference, which is at most 0.0075, or about 
0.25% of the maximum value of &,(XI which is given by (18). For definiteness we 
choose form I1 for E , ( x ) .  It is perhaps significant that in first order the method yields 
virtually only one approximant which satisfies the necessary requirements. In second 
order only form 111 survives. The third order has two acceptable extrapolants for 
E ~ ( x ) ;  we have not been able to eliminate one in favour of the other and so must retain 
both. This will ultimately determine an uncertainty (which will be small) in the final 
equation of state. For both fourth and fifth orders form XI1 is the only extrapolant 
left from the elimination process. Figure 4 displays all the e , ( x )  thus arrived at and 

I I 

/ I 
/ I 

/ I 
/ I 

/ I 
I 

/ 
1 

/ I 

/ I 
+ 0 

I I I d 
0 0.1 0.3 0.5 

x 

Figure 3. Difference of nearly degenerate forms 11 and 111 of table 1 of first-order energy 
extrapolants to (12).  
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X 

Figure 4. Graph of selected extrapolants to low-density series (12) for order i = 1-5. Roman 
numerals refer to specific approximants as listed in table 1. 

Table 2. Numerical values of C,, and C2, ( i  = 1, 2 , .  . . , 5)  in (12) for the Burkhardt HCSW 

model potential (5). The coefficients C,, were determined in connection with the stated 
forms (Roman numerals) as selected from table 1 using constraints (16) and (18). 

i 

. i 1  2 3 4 5 

1 12.036 105 -4.955 702 -16.333 996 -21.296 272 -18.095 008 
2 78.61568 -143.876 079 -84.568 230 112.555 958 323.803 363 
3 -0.651 64 (11) -81.379 8 (111) 185.3784 (111) 451.537 3 (XII)  325.435 5 ( X I I )  

16.025 5 (11)  

should be compared with figure 1 of [ 171 where the exact fermion results [ 141 mentioned 
before are plotted as a function of x. 

Table 2 lists the numerical values of the coefficients C,, ( j  = 1,2 ,3 ;  i = 1, 2, 3, 4, 
5) for the Burkhardt HCSW potential. We emphasise that the extrapolant forms E, (x)  
contain three- and higher-body correlation effects since expanding E,(x)  about x = 0 
produces an  infinite series of terms, in principle reflecting n-body cluster effects even 
if imperfectly, as also occurs in conventional perturbative and variational schemes 
addressing the ground-state energy problem. Note the more than order-of-magnitude 
difference of C33 as given through forms I1 or 111, which, however, will cause only a 
7.5'10 uncertainty in the final saturation energy, to which we now turn. 

4. Attractive coupling constant series analysis 

We have arrived at what are believed to be reasonable representations for e , (x)  over 
the greater part of the physical density interval. These are the generalised Pad6 forms 
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of table 1 corresponding, order by order, to the blank entries in the right half of the 
table, namely the forms plotted in figure 4. They are now used for the E,(x) ( i  = 1-5) 
in (19) for the ground-state energy of the many-boson Schrodinger equation. The A 
power series through fifth order is, say, 

a fifth-order polynomial in A to be analysed in terms of all (standard) Pad6 
approximants [ L/ M](A) with O s  L +  M s 5.  The form [ O / O ] ( A )  = 1 will give in (19) 
the hard-sphere boson equation of state, while the form [ L / O ] ( A )  will provide the 
‘straight’ Lth-order van der Waals perturbation corrections. All forms [0/ M](A) are 
simple reciprocals of Mth-order polynomials in A with finite x-dependent coefficients. 
The latter are finite for all x and so [O/M](A) cannot be zero at any x for fixed A ;  
hence they cannot provide energy minima. For illustration we display just one Pad6 
form to (26), namely 

Using form 111 for E ~ ( x ) ,  we plot in figure 5 all approximants with 0 s L+ M s 5 ,  
except the [ O / M ] ( A ) .  Binding is already achieved in first order: the [1/0] curve. The 
broken portion of each curve corresponds to the unstable and metastable segments 
eliminated by a standard ‘convex hull construction’ [18], of which the Maxwell rule 
of equal areas is an example. The experimental results for liquid 4He are summarised 
[19] by the bold curve which represents an interpolation of the data. Figure 6 shows 
an enlargement of the saturation minima predicted by our calculations. The final 
predicted saturation energy in fifth order is about -15.10+0.05 K, being bounded 
above by the [2/3], and below by the 14/11, Pad6 forms. 

Figure5 Energy per boson plotted against the ( n c 3 ) ” ‘  variable as given by Pad6 
approximants [ L / M ] ( h )  to A expansion equation (19) using form 111 for E \ ( x ) .  The bold 
curve represents an interpolation of laboratory empirical liquid 4He results. Open circles 
mark saturation minima. The broken curves refer to unstable branches of the equation of 
state, as explained in the text. 



Hard-core square-well boson matter 725 

0.485 
-1505 

12131 

[3111 

0 480 0.485 
-1505 I 

12131 1 . -  [3111 

t 
-15.10 

[5101 

Figure 6. Same as figure 5 ,  but enlarged. Energy minima: D, L + M = 4; 0, L + A4 = 5 

On the other hand, form I1 for e3(x) gives the somewhat weaker-bound results 
of figure 7, with a saturation energy of about -14.070*0.015 K. The net uncertainty 
due to the ambiguity of forms I1 and 111 in third order is thus only about 1.145 K out 
of 15.20 K, or about 7.5%. 

We mention that all denominators of the [ L / M ] ( A )  forms have been tested for 
possible zeros, at the fixed saturation x value, as A goes from 0 to the value A, as 
given by (17). None were found, and thus all the A Pad6 forms are singularity-free 
along the trajectory mentioned before, as required. 

The somewhat large saturation density predicted-just over twice the empirical 
value of 0.022 A-is probably attributable to the rather small core radius of 1.685 8, 
of the Burkhardt HCSW. The larger core radius of 2.3 A of a more recent HCSW potential 
model [ 201, not constructed based on phase-equivalence criteria, however, would 
definitely reduce the saturation density discrepancy. In  fact, it is easy to see that 
increasing c beyond the value of 1.685 A used here will ( a )  shift the experimental 
curve in figure 5 to the right and simultaneously ( b )  shift the calculated curves vertically 

j nc3l’’2 
0 415 0480 0 465 

I I 

-14.05 

L‘ -14.07 $ 1  -14.0 

Figure7. Same as figure 6, but using form 11 for e ) ( ~ ) .  Energy minima: A, L +  M = 3 ;  ., 
L+ M = 4; 0, L+ M = 5 .  
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up, if h and (Y are kept constant. Clearly, however, one should not insist too much 
on agreement with laboratory (as opposed to computer) experiments because of the 
simple nature of the model potential as well as, of course, the neglect of three- and 
higher-body forces in  the whole calculation. 

5. Conclusions 

Starting from the well known low-density expansion for the ground-state energy of an 
interacting many-boson system we have rearranged the series into one whereby the 
unperturbed reference system is not the ideal Bose gas but rather the fluid of repulsive 
particles. We have limited ourselves for now to a model pair central potential of 
hard-core square-well shape. 

The density dependence of the first five perturbation corrections to this fluid, due 
to attractions, was found to be violent and out of bounds. Little improvement was 
seen to ensue from direct imposition of physical constraints emerging from the assump- 
tion-known to be true in one and two dimensions in classical systems-that the 
present perturbation scheme is exact as close packing is approached. Extrapolation 
in density of the perturbation energies was then carried out via a new method called 
‘tailing’ but based essentially on generalised PadC approximants. Together with the 
above-mentioned physical constraints, other general criteria were applied to the eleven 
distinct extrapolants thus constructed in each order. These conditions allowed the 
elimination of all but one acceptable form in each order, with the sole exception of 
third order, where two distinct and appreciably non-degenerate forms remained (which 
in the end left an uncertainty of about 7.5%). Moreover, the correlated behaviour in 
density of the energy corrections in all five orders was found to be very reasonable 
compared with exact calculations through fourth order that exist in  the literature for 
purely attractive fermions. 

A standard PadC analysis was then carried out in the remaining attractive coupling 
constant series through fifth order leading to a stable result in the ground-state energy 
of the many-boson Schrodinger equation. 

Computer simulations, such as GFMC, for even the purely repulsive hard-sphere 
boson fluid at densities approaching the packing density would go a long way in testing 
the accuracy of our description of the reference unperturbed state. Of course, GFMC 

calculations for the full HCSW fluid would be ideal. 
Applications like those presented here are planned for the same ‘He system but 

interacting via more realistic pair potentials for which there exist GFMC results [21]. 
For this purpose, extensive tables of the required A expansion coefficients for several 
interparticle forces have been made available [22]. 
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